Reaction of Isonitriles with Dibenzoylacetylene Leading to Furan and Difuropyran Derivatives

by Mehdi Adib* ${ }^{* a}$), Shahzad Feizi ${ }^{\text {a }}$), Maryam Shahzad Shirazi ${ }^{\text {a }}$), Long-Guan Zhu ${ }^{\text {b }}$), and Hamid Reza Bijanzadeh ${ }^{\text {c }}$)
${ }^{\text {a }}$) School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455,
Tehran, Iran (phone/fax: + 98-21-66495291; e-mail: madib@khayam.ut.ac.ir)
${ }^{\text {b }}$) Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
${ }^{c}$) Department of Chemistry, Tarbiat Modarres University, P.O. Box 14115-175 Tehran, Iran

Abstract

A mixture of an isocyanide and dibenzoylacetylene in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ undergoes a smooth addition reaction at ambient temperature to furnish 3-[5-(alkylimino)-3,4-dibenzoyl-2-phenylfuran-2(2H)-yl]-1-phenylprop-2-yn-1-ones (1:2 adduct) and \{2,5-bis(alkylimino)-4,7,8a-triphenyl-5H-difuro[2,3-b:3', $\left.4^{\prime}-e\right]$ -pyran-3($8 \mathrm{a} H)$-yl $\}$ (phenyl)methanones ($2: 2$ adduct). Single-crystal X-ray analyses conclusively confirmed the structures of the adducts.

Introduction. - It has been known from the studies of various groups that addition of nucleophiles devoid of acidic H -atoms such as $\mathrm{Ph}_{3} \mathrm{P}$, pyridine, amines, DMSO, phosphoranes, and isocyanides to electron-deficient acetylenic compounds leads to a 1:1 zwitterionic intermediate [1]. Isocyanides, however, differ in their reactivity profile due to the presence of the divalent C -atom and its pronounced reactivity towards electrophilic $\mathrm{C}\left(\mathrm{sp}\right.$ or $\left.\mathrm{sp}^{2}\right)$ centers. In transformations involving these entities, this divalent C -atom is converted to a tetravalent state, which renders the addition irreversible. It may be recalled that this property of isocyanides has been crucial in the successful development of classical multicomponent reactions (MCRs) like Passerini 3 CR and Ugi 4CR [2].

Winterfeldt et al. had observed that isocyanides readily add to dimethyl acetylenedicarboxylate (DMAD) [1g]. The initially formed $1: 1$ zwitterionic intermediate (Fig. 1) can undergo further reaction with DMAD and isocyanide in different molar proportions leading to various adducts. Subsequently, George and co-workers have established the structures of several adducts by single-crystal X-ray-analysis [3].

Furans and their reduced forms are common structural motifs in naturally occurring compounds such as pheromones, polyether antibiotics, and furano-terpenes [4-6]. Moreover, they are useful building blocks in the total synthesis of natural products and pharmaceuticals. Some furan derivatives have been shown to possess antitumor and cytotoxic, antimicrobial, antispasmodic, anti-inflammatory, cholesterol-acyltransferase

Fig. 1. The Winterfeldt zwitterionic intermediate
inhibitory, and several other biological activities [7]. Furthermore, furan heterocycles are found in synthetic materials, such as agrochemical bioregulators, essential oils, cosmetics, dyes, photosensitizers, flavoring and fragrance compounds, textiles and fibers, surface active agents and detergents, fire retardants, and polymer materials, and in fossil fuel industry [5b].

Furopyrans, 5-6 bicyclic systems with one O-atom in each ring, consist of a furan ring attached to a pyran ring. These fused heterocyclic compounds have attracted attention, because they constitute an important class of natural and non-natural products, many of which exhibit biological activities. Myxostiolide has been isolated from the fungus Myxotrichum stipitatum and serves as a plant-growth regulator, and dysiherbaine acts as a selective agonist of non-NMDA-type glutamate receptors in the central nervous system (Fig. 2) [8].

So far, the most common synthetic routes reported for the preparation of furo[2,3b]pyran and furo[3,4-b]pyran ring systems involve syntheses of the rings i) from acyclic compounds, $i i$) by formation of the six-membered ring, and iii) by formation of the fivemembered ring [9].

Myxostiolide

Dysiherbaine

Fig. 2. Examples of biologically active furopyrans

Results and Discussion. - To the best of our knowledge, there is no report in the literature on the synthesis of the difuro $\left[2,3-b: 3^{\prime}, 4^{\prime}-e\right]$ pyran ring system. As part of our current studies on the development of new efficient strategies for the preparation of interesting bioactive molecules and drug cores [10], herein, we report a reaction leading to dihydrofurans and difuro $\left[2,3-b: 3^{\prime}, 4^{\prime}-e\right]$ pyrans. Thus, a mixture of an isocyanide 1 and dibenzoylacetylene (2) underwent a smooth addition reaction in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction proceeded at ambient temperature and went to completion within 48 h to afford 3-[5-(alkylimino)-3,4-dibenzoyl-2-phenylfuran-2(2 H)-yl]-1-phe-nylprop-2-yn-1-ones ($\mathbf{3} ; 1: 2$ adduct) and $\{2,5$-bis(alkylimino)-4,7,8a-triphenyl-5H-difuro[2,3-b:3', $\left.4^{\prime}-e\right]$ pyran-3(8aH)-yl\}(phenyl)methanones (4;2:2 adduct) (Scheme 1). TLC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the reaction mixtures clearly indicated the formation of only 3 and 4 (see Exper. Part) ${ }^{1}$).

The structures of the isolated products 3 and $\mathbf{4}$ were deduced from ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3 b}$ showed a singlet $(\delta(\mathrm{H}) 1.41)$ readily recognized as arising from the ${ }^{t} \mathrm{Bu}$ group, as well as characteristic signals with appropriate chemical shifts and coupling constants for the 20 aromatic H -atoms. The ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{3 b}$ exhibited characteristic signals at 29.8 and 55.4 (${ }^{(} \mathrm{Bu}$), 60.1 ($\mathrm{PhC}-\mathrm{O}$), 86.4 and 87.2 (2 sp C -atoms), 188.7 and 189.8 (2 benzoyl $\mathrm{C}=\mathrm{O}$),

[^0]Scheme 1. Reaction between Isocyanides and Dibenzoylacetylene

and 177.0 arising from the acetylenic conjugated $\mathrm{C}=\mathrm{O}$ group. The signals of other twelve CH and seven quaternary C -atoms were observed with appropriate chemical shifts in the downfield region of the spectrum, in agreement with the proposed structure (see Exper. Part).

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{4 b}$ showed two single sharp lines $(\delta(\mathrm{H}) 1.26$ and 1.29), attributed to two ${ }^{t} \mathrm{Bu}$ groups along with characteristic signals with appropriate chemical shifts and coupling constants for the 20 aromatic H -atoms. The ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{4 b}$ exhibited characteristic signals at $\delta(\mathrm{C}) 30.06,30.12$, 55.1 , and 55.7 (2 $\left.{ }^{t} \mathrm{Bu}\right), 108.1(\mathrm{O}-\mathrm{C}-\mathrm{O})$, and $190.4(\mathrm{C}=\mathrm{O})$. Signals of twelve CH and twelve quaternary C-atoms with appropriate chemical shifts were observed in the downfield region of the spectrum, in agreement with the proposed structure (see Exper. Part).

Single-crystal X-ray analyses of 3a and 4a confirmed conclusively the structures of the isolated products. ORTEP Diagrams of 3a and 4a are shown in Figs. 3 and 4, respectively $\left.{ }^{2}\right)^{3}$).

A plausible mechanism for the formation of the 1:2 adduct is proposed in Scheme 2. The reactive $1: 1$ zwitterionic intermediate 5, generated in situ from the reaction between $\mathbf{1}$ and dibenzoylacetylene (2), may attack the $\mathrm{C}=\mathrm{O}$ group of another molecule 2 to give the isonitrilium alkoxide intermediate 6. The latter may undergo an intramolecular nucleophilic addition of the alkoxide to furnish the isolated imino γ lactone 3.

Winterfeldt et al. reported a similar structure for the 1:2 adduct of an isocyanide $\mathbf{1}$ ($\mathrm{R}=$ cyclohexyl and $\mathrm{R}={ }^{t} \mathrm{Bu}$) and DMAD (7). In the proposed mechanism, the reactive $1: 1$ zwitterionic intermediate $\mathbf{8}$ is trapped by another molecule of $\mathbf{7}$ to directly

[^1]

Fig. 3. ORTEP Plot of the molecular structure of 3a

Fig. 4. ORTEP Plot of the molecular structure of $\mathbf{4 a}$
give dimethyl 5-(alkylimino)-2-methoxy-2-(3-methoxy-3-oxoprop-1-yn-1-yl)-2 H -fur-an-3,4-dicarboxylates 9 (Scheme 3) [1g]. The structure of 9 was established by X-ray crystallography neither by Winterfeldt et al. nor later by George and co-workers [3].

A mechanistic rationalization for the formation of the $2: 2$ adduct is depicted in Scheme 4. Nucleophilic addition of the zwitterionic intermediate 5 on the $\mathrm{C}=\mathrm{O}$ group of another zwitterion $\mathbf{5}$ would form the primary $2: 2$ adduct $\mathbf{1 0}$. Nucleophilic attack of the alkoxide group on the adjacent $\mathrm{C}=\mathrm{O}$ group, followed by the addition of the latter on the adjacent isonitrilium moiety, may produce the 2,7-dioxabicyclo[3.2.0]heptene

Scheme 2. Proposed Mechanism for the Formation of $\mathbf{3}$

Scheme 3. Mechanism for the Formation of 9 Proposed by Winterfeldt et al.

Scheme 4. Proposed Mechanism for the Formation of 4

imino-lactone intermediate 11. The latter may undergo bond migration and ring opening to form carbene $\mathbf{1 2}$. The carbene moiety may be intramolecularly attacked by the adjacent alkoxide group, followed by the addition of the resulting enolate on the adjacent isonitrilium moiety, to afford the isolated difuro $\left[2,3-b: 3^{\prime}, 4^{\prime}-e\right]$ pyran 4.

In summary, we have developed a new reaction between isocyanides and dibenzoylacetylene leading to 3-[5-(alkylimino)-3,4-dibenzoyl-2-phenylfuran-2(2 H)-yl]-1-phenylprop-2-yn-1-ones ($\mathbf{3} ; 1: 2$ adduct) and $\{2,5$-bis(alkylimino)-4,7,8a-triphen-yl-5H-difuro[2,3-b:3', $\left.4^{\prime}-e\right]$ pyran-3($\left.8 \mathrm{a} H\right)$-yl\}(phenyl)methanones (4;2:2 adduct) under
mild reaction conditions, i.e., under neutral conditions, and the substances were mixed without any activation or modification. To the best of our knowledge, this is the first report on the synthesis of difuro $\left[2,3-b: 3^{\prime}, 4^{\prime}-e\right]$ pyrans. Moreover, compounds $\mathbf{3}$ and $\mathbf{4}$ prepared in the present study may find useful applications as intermediates and/or target compounds in organic synthesis, and also in bioorganic and medicinal chemistry.

This research was supported by the Research Council of the University of Tehran as research project (6102036/1/03).

Experimental Part

General. All the chemicals were obtained from Merck (Germany), and were used without further purification. Dibenzoylacetylene (2) was prepared as described in [11]. Column chromatography (CC): silica gel 60 (Merck). M.p.: Electrothermal 9100 apparatus; uncorrected. IR Spectra: Shimadzu IR-460 spectrometer; \tilde{v} in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra: Bruker $D R X-500$ Avance (at 500.1 and 125.8 MHz , resp.) instrument; in CDCl_{3} soln.; δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}(=0 \mathrm{ppm}), J$ in Hz. EI-MS $(20 \mathrm{eV})$: Agilent Technologies (HP) 5973 mass spectrometer; in m / z (rel. \%). Elemental analyses: Heraeus CHN-ORapid analyzer. X-Ray crystallography: Bruker SMART diffractometer; CCD area detector; graphite monochromatized Mo_{α} radiation.

General Procedure for the Preparation of Compounds $\mathbf{3}$ and $\mathbf{4}$. A soln. of the appropriate isocyanide 1 $(1 \mathrm{mmol})$ and $2(1.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was stirred at r.t. for 48 h . After completion of the reaction (TLC monitoring), the solvent was removed, and the residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; hexane/ AcOEt $4: 1$). The products were further purified by recrystallization from hexane/AcOEt 1:1.

3-[3,4-Dibenzoyl-5-(cyclohexylimino)-2,5-dihydro-2-phenylfuran-2-yl]-1-phenylprop-2-yn-1-one (3a). Colorless crystals. Yield: $0.069 \mathrm{~g}\left(36 \%\right.$; relative to cyclohexyl isocyanide). M.p. $122-123^{\circ}$. IR (KBr): $1690(\mathrm{C}=\mathrm{O}), 1646,1591,1489,1443,1328,1262,1220,1177,1081,1020,965,900,844,771,733,681$, 628. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.17-1.93(m, 10 \mathrm{H}) ; 3.82-3.93(m, 1 \mathrm{H}) ; 7.14(d d, J=7.4,7.3,2 \mathrm{H})$; $7.32(d d, J=7.4,7.3,2 \mathrm{H}) ; 7.37(t, J=7.5,1 \mathrm{H}) ; 7.39-7.46(m, 5 \mathrm{H}) ; 7.50(t, J=7.4,1 \mathrm{H}) ; 7.52(d d, J=7.3$, $7.1,2 \mathrm{H}) ; 7.62-7.72(d, J=8.2,2 \mathrm{H} ; d, J=8.1,2 \mathrm{H} ; m, 1 \mathrm{H}) ; 8.25(d, J=8.2,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125.8 \mathrm{MHz}$, CDCl_{3}): 24.6; 24.7; 25.7; 33.3; 33.5; 57.0; 60.2; 86.6; 87.1; 125.8; 128.4; 128.5; 128.8; 129.1; 129.1; 129.4; $129.8 ; 129.9 ; 133.9 ; 134.1 ; 134.6 ; 135.9 ; 136.1 ; 136.2 ; 136.5 ; 136.6 ; 151.0 ; 154.6 ; 177.0 ; 188.4 ; 189.7$. EI-MS: $578\left(6, M^{+}\right), 552(5), 524(6), 500(16), 480(16), 468(7), 440(6), 423(7), 412(7), 390(12), 375(20), 369$ (20), 362 (10), 347 (9), 313 (16), 291 (11), 264 (13), 239 (19), 211 (13), 183 (8), 149 (16), 137 (9), 105 (100), 77 (86), 66 (28), 57 (37). Anal. calc. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NO}_{4}$ (577.68): C 81.09, H 5.41, N 2.42; found: C 80.92, H 5.49, N 2.34 .
[2,5-Bis(cyclohexylimino)-2,8a-dihydro-4,7,8a-triphenyl-5H-difuro[2,3-b:3',4'-e]pyran-3-yl](phenyl)methanone (4a). Red crystals. Yield: 0.199 g (44%; relative to cyclohexyl isocyanide). M.p. 221 222°. IR (KBr): 1676 (C=O), 1599, 1491, 1450, 1408, 1359, 1284, 1234, 1129, 1068, 1013, 962, 894, 843, $773,738,686 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07-1.74(m, 20 \mathrm{H}) ; 3.73-3.80(m, 1 \mathrm{H}) ; 3.85-3.88(m$, $1 \mathrm{H}) ; 6.94(t, J=7.7,2 \mathrm{H}) ; 7.08(t, J=7.4,1 \mathrm{H}) ; 7.21(d, J=7.4,2 \mathrm{H}) ; 7.28(t, J=7.7,2 \mathrm{H}) ; 7.39-7.46(m$, $5 \mathrm{H}) ; 7.51(d, J=7.4,2 \mathrm{H}) ; 7.55(d d, J=7.9,7.7,2 \mathrm{H}) ; 7.64(d d, J=7.5,2.2,2 \mathrm{H}) ; 8.05(d, J=7.6,2 \mathrm{H})$. ${ }^{13}$ C-NMR (125.8 MHz, CDCl_{3}): 23.6; 24.0; 24.6; 24.7; 25.7; 25.8; 33.1; 33.4; 33.6; 33.6; 55.8; 56.6; 107.9; $125.5 ; 125.9 ; 126.0 ; 126.9 ; 127.1 ; 128.0 ; 128.1 ; 128.9 ; 128.9 ; 128.9 ; 129.0 ; 129.4 ; 129.8 ; 130.1 ; 131.0 ; 132.5$; 133.3; $135.5 ; 136.4 ; 137.2 ; 138.5 ; 145.9 ; 146.6 ; 154.2 ; 190.1$. EI-MS: $687\left(3, M^{+}\right), 607(10), 589(20), 564$ (6), $507(23), 481(23), 464(11), 433(10), 418(6), 401(14), 374(46), 349(27), 330(9), 289(9), 270(8)$, 240 (9), 203 (10), 186 (8), 122 (19), 105 (100), 91 (8), 77 (74), 68 (20), 55 (31). Anal. calc. for $\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}$ (686.85): C 80.44, H 6.16, N 4.08; found: C 80.43, H 6.22, N 3.97.

3-\{3,4-Dibenzoyl-5-[(tert-butyl)imino]-2,5-dihydro-2-phenylfuran-2-yl\}-1-phenylprop-2-yn-1-one (3b). Colorless crystals. Yield: $0.078 \mathrm{~g}\left(43 \%\right.$; relative to $\left.{ }^{t} \mathrm{BuNC}\right)$. M.p. $110-111^{\circ}$. IR (KBr): $1685(\mathrm{C}=\mathrm{O})$, $1649,1588,1441,1328,1260,1223,1175,970,896,850,769,735,681 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.41$ $(s, 9 \mathrm{H}) ; 7.14(d d, J=7.9,7.7,2 \mathrm{H}) ; 7.32(d d, J=7.8,7.7,2 \mathrm{H}) ; 7.37(t, J=7.7,1 \mathrm{H}) ; 7.37-7.52(m, 8 \mathrm{H})$; $7.63-7.71(d, J=8.0,2 \mathrm{H} ; d, J=7.4,2 \mathrm{H} ; m, 1 \mathrm{H}) ; 8.25(d, J=7.4,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$29.8 ; 55.4 ; 60.1 ; 86.4 ; 87.2 ; 125.8 ; 128.4 ; 128.5 ; 128.8 ; 129.1 ; 129.1 ; 129.4 ; 129.7 ; 129.8 ; 133.9 ; 134.1 ; 134.6$; 136.0; $136.2 ; 136.5 ; 136.6 ; 137.0 ; 150.3 ; 152.5 ; 177.0 ; 188.7 ; 189.8$. EI-MS: $551\left(7, M^{+}\right), 537(2), 496(4), 480$ (14), 454 (9), 423 (17), 391 (8), 377 (10), 366 (31), 349 (33), 289 (12.5), 272 (6), 215 (7), 202 (8), 189 (6), 177 (13), 162 (11), 122 (30), 105 (100), 77 (93), 57 (18). Anal. calc. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{NO}_{4}$ (551.64): C 80.56, H 5.30, N 2.54 ; found: C 80.70, H 5.56, N 2.33 .
\{2,5-Bis[(tert-butyl)imino]-2,8a-dihydro-4,7,8a-triphenyl-5H-difuro[2,3-b:3',4'-e]pyran-3-yl\}(phenyl)methanone (4b). Red crystals. Yield: $0.197 \mathrm{~g}(47 \%$; relative to tert-butyl isocyanide). M.p. 193-194 . IR (KBr): $1673(\mathrm{C}=\mathrm{O}), 1592,1490,1449,1405,1355,1279,1208,1164,1091,1009,920,882,841,771,735$, 681. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26,1.29(2 \mathrm{~s}, 18 \mathrm{H}) ; 6.94(t, J=7.7,2 \mathrm{H}) ; 7.08(t, J=7.4,1 \mathrm{H}) ; 7.21(d$, $J=7.3,2 \mathrm{H}) ; 7.29(t, J=7.7,2 \mathrm{H}) ; 7.38-7.48(m, 5 \mathrm{H}) ; 7.51(d, J=7.3,2 \mathrm{H}) ; 7.56(d d, J=7.9,7.6,2 \mathrm{H}) ; 7.65$ $(d d, J=7.6,2.0,2 \mathrm{H}) ; 8.03(d, J=7.5,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 30.06 ; 30.12 ; 55.1 ; 55.7 ; 108.1$; $125.5 ; 125.9 ; 126.7 ; 127.0 ; 127.2 ; 128.1 ; 128.1 ; 128.8 ; 128.9 ; 128.9 ; 129.0 ; 129.3 ; 129.7 ; 130.2 ; 132.2 ; 132.3$; 133.2; $135.4 ; 136.5 ; 137.5 ; 138.3 ; 144.9 ; 145.3 ; 152.1 ; 190.4$. EI-MS: $635\left(4, M^{+}\right), 579(76), 522(17), 495$ (9), 473 (6), $445(10), 417(78), 400(31), 390(21), 374(56), 350(20), 313(5), 239(6), 105(100), 77(78)$, 57 (86). Anal. calc. for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$ (634.77): C 79.47, H 6.03, N 4.41; found: C 79.49, H 5.98, N 4.38.

REFERENCES

[1] a) E. Winterfeldt, Angew. Chem., Int. Ed. 1967, 6, 423; b) J. C. Tebby, I. F. Wilson, D. V. Griffiths, J. Chem. Soc., Perkin Trans. 1 1979, 2133; c) P. J. Butterfield, J. C. Tebby, D. V. Griffiths, J. Chem. Soc., Perkin Trans. 1 1979, 1189; d) E. Winterfeldt, H.-J. Dillinger, Chem. Ber. 1966, 99, 1558; e) E. Winterfeldt, Chem. Ber. 1965, 98, 1581; f) H. J. Bestmann, O. Rothe, Angew. Chem. 1964, 76, 569; g) E. Winterfeldt, D. Schumann, H.-J. Dillinger, Chem. Ber. 1969, 102, 1656.
[2] A. Dömling, Chem. Rev. 2006, 106, 17; A. Dömling, I. Ugi, Angew. Chem., Int. Ed. 2000, 39, 3168.
[3] H. Junjappa, M. K. Saxena, D. Ramaiah, B. B. Lohray, N. P. Rath, M. V. George, J. Org. Chem. 1998, 63, 9801.
[4] B. H. Lipshutz, Chem. Rev. 1986, 86, 795; G. A. Griffith, I. H. Hillier, A. C. Moralee, J. M. Percy, R. Roig, M. A. Vincent, J. Am. Chem. Soc. 2006, 128, 13130; A. Padwa, H. Zhang, J. Org. Chem. 2007, 72, 2570.
[5] a) B. A. Keay, P. W. Dibble, in 'Comprehensive Heterocyclic Chemistry II', Eds. A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Pergamon Press, New York, 1996, Vol. 2, p. 395-436; b) B. A. Keay, J. M. Hopkins, P. W. Dibble, in 'Comprehensive Heterocyclic Chemistry III', Eds. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Elsevier Science, Oxford, 2008, Vol. 3, p. 571-616.
[6] K. Mori, Tetrahedron 1989, 45, 3233; J. W. Westley, 'Polyether Antibiotics: Naturally Occurring Acid Ionophores', Marcel Dekker, New York, 1982; 'Studies in Natural Products Chemistry', Ed. Atta-urRahman, 'Stereoselective Synthesis (Part D)', Elsevier, Amsterdam, 1990, Vol. 6, p. 107 -132; J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55, 3450; M. Aso, A. Ojida, G. Yang, O. J. Cha, E. Osawa, K. Kanematsu, J. Org. Chem. 1993, 58, 3960.
[7] S. M. Kupchan, M. A. Eakin, A. M. Thomas, J. Med. Chem. 1971, 14, 1147; M. M. Bandurraga, W. Fenical, S. F. Donovan, J. Clardy, J. Am. Chem. Soc. 1982, 104, 6463.
[8] Y. Kimura, A. Shimada, M. Kusano, K. Yoshii, A. Morita, M. Nishibe, S. Fujioka, T. Kawano, J. Nat. Prod. 2002, 65, 621; O. Miyata, R. Iba, J. Hashimoto, T. Naito, Org. Biomol. Chem. 2003, 1, 772; S. H. Kang, Y. M. Lee, Synlett 2003, 993.
[9] F. Alonso, E. Lorenzo, J. Meléndez, M. Yus, Tetrahedron 2003, 59, 5199; R. Roggenbuck, A. Schmidt, P. Eilbracht, Org. Lett. 2002, 4, 289; W. Zhuang, J. Thorhauge, K. A. Jørgensen, Chem. Commun. 2000, 459; K. Wakabayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2001, 123, 5374; S. Mikami, K. Fujita, Y. Nakamura, H. Yorimitsu, H. Shinokubo, S. Matsubara, K. Oshima, Org. Lett. 2001, 3, 1853; I. Terstiege, R. E. Maleczka Jr., J. Org. Chem. 1999, 64, 342; P. Müller, G. Bernardinelli, Y. F. Allenbach, M. Ferri, S. Grass, Synlett 2005, 1397; S. D. Haveli, P. R. Sridhar, P. Suguna, S. Chandrasekaran, Org. Lett. 2007, 9, 1331; M. C. Willis, S. E. Flower, Synlett 2003, 1491; M. Tiecco, L. Testaferri, L. Bagnoli, R. Terlizzi, A. Temperini, F. Marini, C. Santi, C. Scarponi, Tetrahedron: Asymmetry 2004, 15, 1949.
[10] M. Adib, E. Sheikhi, H. R. Bijanzadeh, L.-G. Zhu, Tetrahedron 2012, 68, 3377; M. Adib, E. Sheikhi, M. Bagheri, H. R. Bijanzadeh, M. Amanlou, Tetrahedron 2012, 68, 3237; M. Adib, E. Sheikhi, N. Rezaei, Tetrahedron Lett. 2011, 52, 3191; M. Adib, S. Ansari, H. R. Bijanzadeh, Synlett 2011, 619; M. Adib, M. Karimzadeh, M. Mahdavi, E. Sheikhi, P. Mirzaei, Synlett 2011, 834; M. Adib, E. Sheikhi, A. Kavoosi, H. R. Bijanzadeh, Tetrahedron 2010, 66, 9263; M. Adib, A. Mohamadi, E. Sheikhi, S. Ansari, H. R. Bijanzadeh, Synlett 2010, 1606; M. Adib, E. Sheikhi, A. Kavoosi, H. R. Bijanzadeh, Synthesis 2010, 4082; M. Adib, E. Sheibani, L.-G. Zhu, H. R. Bijanzadeh, Tetrahedron Lett. 2009, 50, 4420.
[11] L. Skattebøl, E. R. H. Jones, M. C. Whiting, Org. Synth. 1963, Coll. Vol. 4, 792; K. Bowden, I. M. Heilborn, E. R. H. Jones, B. C. L. Weedon, J. Chem. Soc. 1946, 39.

[^0]: ${ }^{1}$) The best results were obtained when the two reactants were reacted in a 1:1.4 ratio.

[^1]: ${ }^{2}$) Selected X-ray crystallographic data for compound 3a: $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NO}_{4}$, triclinic, space group $=P \overline{1}, a=$ 10.130(3) $\AA, b=10.864(4) \AA, c=14.938(5) \AA, \alpha=93.368(6), \beta=95.270(5), \gamma=109.139(5), V=$ $1539.6(9) \AA^{3}, T=295(2) \mathrm{K}, Z=2, D_{\text {calc }}=1.246 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.080 \mathrm{~mm}^{-1}, 1945$ observed reflections, final $R_{1}=0.086, w R_{2}=0.189$ and for all data $R_{1}=0.239, w R_{2}=0.270$. CCDC-852555 contains the corresponding supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
 ${ }^{3}$) Selected X-ray crystallographic data for compound $4 \mathbf{4}: \mathrm{C}_{46} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}$, monoclinic, space group $=P 2_{1} / \mathrm{c}$, $a=9.6730(17) \AA, b=10.8199(19) \AA, c=39.7244(70) \AA, \beta=93.601(3)^{\circ}, V=4149.38(15) \AA^{3}, T=$ $295(2) \mathrm{K}, Z=4, D_{\text {calc }}=1.23 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.202 \mathrm{~mm}^{-1}, 3080$ observed reflections, final $R_{1}=0.134$, $w R_{2}=0.361$ and for all data $R_{1}=0.254, w R_{2}=0.435$. CCDC-852556 contains the corresponding supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

